Medication Name

Both generic and common brand names are listed.

Class

Medications are grouped into classes ("families") based on their chemical, pharmacological, or clinical properties. It is often useful to study medications on a class-by-class basis, identifying similarities and differences among members of each class.

Controlled Substance Schedule

Title 21 of the United States Code (USC) is the Controlled Substances Act of 1970. It regulates medications with potential for abuse. These Federal regulations are overseen by the Drug Enforcement Administration, but many States have enacted more strict regulations based on them. Medications are placed into schedules based on their clinical use and their risk of abuse and dependence. It is important to note that some States change the Federal scheduling of certain medications. Under Federal law, a State cannot place a medication in a lower schedule than where it is placed by the Federal government (eg, States cannot change a drug placed in Federal Schedule III, IV, or V), but States can and do place certain medications in higher schedules (eg, changing a drug placed in Federal Schedule V into Schedule II, III, or IV, or changing a drug which is not a controlled substance within that State).

- Schedule I: No medical use, high abuse, and dependence potential.
- Schedule II: Legitimate medical use, high abuse, and dependence potential.
- Schedule III: Legitimate medical use, abuse, and dependence potential somewhat less than Schedule II.
- Schedule IV: Legitimate medical use, abuse, and dependence potential less than Schedule III.
- Schedule V: Legitimate medical use, limited abuse, and dependence potential.

Dosage Forms

The most common dosage forms and strengths are listed. Other dosage forms may exist, and may be referenced in the Clinical Pearls section.

Common FDA Label Indication, Dosing, and Titration

The US Food and Drug Administration (FDA) approves medications for market, and also approves specific indications for use and the doses for those uses. Some medications are approved for only one indication, while others are approved for many indications. In most cases, all FDA-approved ("labeled") indications are listed with their approved doses.

Off-Label Uses

While every medication must be approved by the FDA for at least one indication before it is marketed, FDA approval is not always sought for subsequent indications. Prescribers are legally entitled to prescribe medications for any indication they feel is appropriate and clinically justified. In most cases, prescribers limit their use of medications to indications for which evidence supports safety and efficacy, as demonstrated in published clinical trials. While these may not be FDA-approved indications, "off-label" use is common and often completely appropriate. Common off-label uses are included, along with dosing recommendations.

MOA (Mechanism of Action)

The MOA is a succinct summary of the pharmacological properties of each medication.

Drug Characteristics

Each card includes a table summarizing key drug parameters, as outlined below.

Dose Adjustments Hepatic

A Child-Pugh Score can be used to assess hepatic dysfunction. The score employs five clinical measures of liver disease. Each is scored 1-3, with 3 indicating the most severe derangement of that measure. Based on the number of points for each measure, liver disease can be classified into Child-Pugh class A, B, or C.

Measure	1 Point	2 Points	3 Points
Total bilirubin, mg/dL	<2	2-3	>3
Serum albumin, g/L	>35	28-35	<28
INR	<1.7	1.71-2.20	>2.20
Ascites	None	Mild	Severe
Hepatic encephalopathy	None	Grade I-II	Grade III-IV

Points	Class	One-Year Survival	Two-Year Survival	Liver Dysfunction
5-6	Α	100%	85%	Mild
7-9	В	81%	57%	Moderate
10-15	С	45%	35%	Severe

Dose Adjustments Renal

Dose adjustments for some (but not all) of medications that are renally eliminated are necessary in patients with renal dysfunction and hepatically eliminated medications in patients with hepatic dysfunction. Dose adjustments are made by either lowering the dose or dosing less frequently (eg, reducing from tid to daily dosing). The degree of renal dysfunction usually determines the degree of the dose adjustment. Definitions of renal and hepatic dysfunction are often inconsistent, but the recommended dose adjustments included in these flash cards are drawn from product package inserts and other sources. Clinicians should always exercise caution when treating patients with liver and/or kidney disease, and monitor carefully for signs of toxicity, even if dose adjustments are made.

In general, CrCl is used to assess renal function and is calculated with the following equations:

Cockcroft and Gault Equation:

 $CrCl (males) = [(140 - age) \times IBW]/(Scr \times 72)$ CrCl (females) = [(140 - age) × IBW]/(Scr × 72) × (0.85)

Estimate Ideal Body Weight in (kg):

Males: IBW = 50 kg + 2.3 kg for each inch over 5 ft Females: IBW = 45.5 kg + 2.3 kg for each inch over 5 ft

```
Normal Renal Function: CrCl = 50 mL/min or greater

Moderate Renal Impairment: CrCl = 30-50 mL/min

Severe Renal Impairment: CrCl =10-29 mL/min

Renal Failure: CrCl = 9 mL/min or less
```

Dialyzable

Medications may be removed by peritoneal or hemodialysis, requiring dose adjustments and/or redosing after dialysis to replace drug lost. Many references provide details regarding the dialyzability of drugs, and these cards provide basic adjustment recommendations.

Pregnancy Category

The FDA rates and categorizes medications based on the level of risk of fetal harm that medications pose when taken by pregnant women. While these categories are discrete, it is important to recognize that they are sometimes set on the basis of theoretical risks. Clinical decisions must be made individually, weighing the potential risk to both the pregnant woman and the fetus. The pregnancy category of each medication is provided.

- *Category A:* Adequate and well-controlled studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
- *Category B:* Animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women.

- *Category C:* Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.
- *Category D:* There is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.
- *Category X:* Studies in animals or humans have demonstrated fetal abnormalities and/or there is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience, and the risks involved in use of the drug in pregnant women clearly outweigh potential benefits.

For several years, the FDA has considered changes to the pregnancy and lactation risk rating systems, and while the old systems remains in place at the time these cards are being edited, they may change before the next edition is published. Information about the change can be found at the FDA web site, and excellent information about this situation can be found in these two papers: Ramoz LL, Patel-Shori, NM. Recent changes in pregnancy and lactation labeling: Retirement of risk categories. *Pharmacotherapy* 2014;34(4):389-395, and Singh A, Hughes GJ, Mazzola, N. New changes in pregnancy and lactation labeling. *US Pharm.* 2014;39(10):40-43.

Lactation

As with pregnancy categories, relatively little evidence is available to guide clinical decision making regarding the use of medications in women who are breast-feeding. In most cases, the risks to the child must be weighed against the benefits to the breast-feeding mother. In general, this assessment is based on the risk that an individual medication will be expressed in breast milk, and the risk that such an expression would cause to the infant who subsequently ingests it. As noted above, the FDA is considering changes to the pregnancy and lactation systems used to describe risk. The articles cited can be reviewed for information about this pending change.

Contraindications

Some medications should never be used in certain circumstances or under certain conditions. These situations are known as contraindications and are usually related to common and very dangerous adverse effects that must be avoided by selecting alternative therapeutic options.

Absorption

Pharmacokinetic parameters related to oral bioavailability (F) and the impact of food on absorption are provided.

Distribution

Pharmacokinetic data on extent and nature of distribution, including volume of distribution (Vd) and the extent of protein binding, are provided.

Metabolism

Pharmacokinetic data on metabolic pathways, including cytochrome P450 pathway of elimination and whether a drug is an enzyme inducer or inhibitor, are provided.

Elimination

Pharmacokinetic data on extent of renal (or other) elimination, as well as elimination half-life, are provided.

Pharmacogenetics

Pharmacogenetic information is included if the drug has pharmacogenetic information in the drug label. Generally, information is provided when a patient's genetic composition can affect drug exposure and clinical response variability, risk for adverse events, genotype-specific dosing, or mechanism of drug action. A complete list of drugs with pharmacogenetic information can be found at the following web site: http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378 .htm.

Black Box Warnings

The FDA requires manufacturers to list certain significant safety-related concerns in boxed warnings in their approved product package inserts. These "black box warnings" contain critical information for the safe use of those medications. Key black box warning content is included on each card. Additional information on black box warnings can be found at the following web site: https://blackboxrx.com/app/index.

Medication Safety Issues

Each card includes a table summarizing key medication safety concerns, as outlined as follows.

Suffixes

Many products are available in multiple formulations, for example, in delayed-release dosage forms. These dosage forms are often distinguished through the use of suffixes appended to the name of a different formulation of that same product. It is essential to exercise caution to avoid errors caused by confusing one product with another by omitting or not recognizing the additional suffix. Products that are available in multiple formulations, distinguished by a suffix (or occasionally, a prefix), are noted in this field.

"Tall Man" Letters

Many medications are spelled similarly, leading to substitution errors during prescribing, dispensing, or administration. The use of "Tall Man" lettering—distinguishing one medication from a different, similarly named medication, by capitalizing specific portions of the medication name (either brand or generic name)—has been shown to help prevent substitution errors. Those products for which Tall Man lettering is recommended are noted in this field.

Do Not Crush

Many solid oral dosage formulations are developed to release their active ingredient slowly over time. Crushing those dosage forms (eg, to enable administration through a nasogastric tube, or to make easier to swallow by patients with swallowing disorders) may be particularly dangerous. The formulations of certain products that should not be crushed are noted in this field. Sublingual dosage forms are meant to be dissolved under the tongue and swallowing these dosage forms without allowing them to dissolve lowers the efficacy of the drug. Some taste really bad, and patients prefer to swallow them without allowing them to dissolve.

High Alert

The Institute for Safe Medication Practices (ISMP) maintains a list of medications that are often involved in medication errors, or that are associated with a heightened risk of causing significant patient harm when used in error. Specific care must be exercised when prescribing, dispensing, or administering these products. More information on this field can be found at the ISMP web site at www.ismp.org.

Confused Names

Many medications are confused with other medications based on similarities in the spelling or pronunciation of their names, resulting in substitution errors. Those products that may be confused with different "look-alike or sound-alike" products are noted in this field.

Beers Criteria

The initial Beers Criteria identified medications for which risks outweigh benefits and those that should be avoided or used with caution in adults aged 65 and older. The list was first published in 1991 by Mark Beers, MD (Beers MH, Ouslander JG, Rollingher I, et al. Explicit criteria for determining inappropriate medication use in nursing home residents. *Arch Int Med.* 1991;151:1825–1832). The list has been revised several times subsequently, most recently by the American Geriatrics Society in 2012 (American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics Society updated Beers criteria for potentially inappropriate medication use in older adults. *J Am Geriatr Soc.* 2012;60:616–631). In this version of these drug cards, only warnings included in the first Table 1 of the Beers Criteria, "Agents Potentially Inappropriate Medication Use in Older Adults," have been noted. Two other tables, listing drugs to be used with caution due to drug-disease or drug-syndrome interactions and drugs to be used with caution in older adults, are also included in the Beers guideline, but have not been noted in these cards.

Drug Interactions

Concurrent use of multiple medications (poly-pharmacy) introduces significant risks as certain drugs interact with others to create adverse effects. Many interactions are caused when one agent affects the metabolism of another, thereby either increasing the risk of toxicity (when metabolism is decreased) or decreasing efficacy (when metabolism is increased). Examples of drugs that are inhibitors or inducers of the cytochrome P450 system, or are substrates (drugs metabolized by that system), and other metabolic issues, are included in Prefaces H, I, J, and K. Other mechanisms can also result in negative outcomes. The most common interactions are listed in these cards. Note that in many cases, drugs interact in a similar way with entire classes of other drugs, and in those situations, the class of interacting agent is listed. Lists of the agents that are members of those classes are listed in other prefaces in this card set. Since some interactions are unavoidable, strategies for managing some interactions are provided.

Adverse Reactions

Every drug is associated with potential risks. Adverse effects are evaluated based on the frequency with which they occur and the degree of severity of the reaction, if it does occur. Most medications have a few common adverse effects that may or may not be severe enough to limit the use of the medication, and a few that occur rarely, but are very serious. Common adverse

effects (that occur in >10% of patients who take the medication) and less common (that occur in 1-10% of patients) are summarized in these cards. Rare (occurring in <1% of patients) but serious adverse effects are also listed.

Monitoring Parameters—Efficacy and Toxicity

Patients receiving medications should be monitored to ensure that the treatment is achieving its desired outcome without causing adverse effects. Specific efficacy and toxicity monitoring parameters are listed for each medication.

Key Patient Counseling Points

In order for medications to be used effectively and safely, patients must understand their therapies. Key information that patients should be provided with is summarized for each medication.

Clinical Pearls

Clinical information regarding the use of each medication, including place in therapy, is provided in this section. Special alerts from the FDA, which are usually related to adverse reactions that are being evaluated and have not been included in the product package insert, are included here as well.

This page intentionally left blank

Apothecary Weight Equivalents

1 scruple (3)	= 20 grains (gr)
60 grains (gr)	= 1 dram (3)
8 drams (3)	$= 1 \text{ ounce } (\mathbf{Z})$
1 ounce (3)	= 480 grains
12 ounces (3)	= 1 pound (lb)

Apothecary Volume Equivalents

60 minims (m)	= 1 fluidram (fl 3)
8 fluidrams (fl 3)	= 1 fluid ounce (fl \mathbf{Z})
1 fluid ounce (fl 3)	= 480 minims
16 fluid ounces (fl 3)	= 1 pint (pt)

Avoirdupois Equivalents

1 ounce (oz)	= 437.5 grains
16 ounces (oz)	= 1 pound (lb)

Weight/Volume Equivalents

1 mg/dL	$= 10 \ \mu g/mL$
1 mg/dL	= 1 mg%
1 ppm	= 1 mg/L

Conversion Equivalents

1 gram (g)	= 15.43 grains
1 grain (gr)	= 64.8 milligrams
1 ounce (3)	= 31.1 grams
1 ounce (oz)	= 28.35 grams
1 pound (lb)	= 453.6 grams
1 kilogram (kg)	= 2.2 pounds
1 milliliter (mL)	= 16.23 minims
1 minim (m)	= 0.06 milliliter
1 fluid ounce (fl oz)	= 29.57 mL
1 pint (pt)	= 473.2 mL
0.1 mg	= 1/600 gr
0.12 mg	= 1/500 gr
0.15 mg	= 1/400 gr
0.2 mg	= 1/300 gr
0.3 mg	= 1/200 gr
0.4 mg	= 1/150 gr
0.5 mg	= 1/120 gr
0.6 mg	= 1/100 gr
0.8 mg	= 1/80 gr
1 mg	= 1/65 gr

Preface C: General Content Related to All Oral Contraceptives

MOA. As contraceptives, estrogens suppress follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to inhibit ovulation, cause edematous endometrial changes that are hostile to implantation of the fertilized ovum, accelerate ovum transport, and produce degeneration of the corpus luteum (luteolysis). Progestins inhibit ovulation by suppression of LH, inhibit sperm capacitation, slow ovum transport, produce a thinning endometrium that hampers implantation, and cause cervical mucus changes that are hostile to sperm migration.

Pharmacokinetics of Progestins

Agent	Absorption	Distribution	Metabolism	Himination
Norgestrel	Unknown	Unknown	Unknown	Unknown
Norethindrone	F = 64%; food has no effect on absorption	Vd = 4 L/kg; highly protein bound	Hepatic not via CYP450	Renal elimination with a half-life of 8 h
Drospirenone	F = 76-85%; food has no effect on absorption	Vd = 4.2 L/kg; highly protein bound	Hepatic not via CYP450	Renal elimination is 38-47% with a half- life of 36-42 h
Desogestrel	F = Almost 100%; food has no effect on absorption	Unknown	Hepatic via CYP2C9 to active metabolite, etonogestrel	Renal elimination of etonogestrel 45% with a half-life of 37 h
Levonorgestrel	F = 100%; food has no effect on absorption	Vd = 1.8 L/kg; highly protein bound	Hepatic not via CYP450	Renal elimination is 45% with a half-life of 17-27 h

Drug Interactions: Oral Contraceptives

Typical Agents	Mechanism	Clinical Management
CYP1A2 substrates	Contraceptives inhibit CYP1A2-mediated metabolism, resulting in increased substrate concentrations and toxicity	Avoid or monitor and reduce substrate dose as needed
CYP2C8 substrates	Contraceptives inhibit CYP2C8-mediated metabolism, resulting in increased substrate concentrations and toxicity	Avoid or monitor and reduce substrate dose as needed
CYP3A4/5 inducers	Increased contraceptive metabolism reduces contraceptive effectiveness	Use an alternative form of birth control
CYP3A4/5 inhibitors	Decreased contraceptive metabolism increases risk of contracep- tive toxicity	Monitor for toxicity and discontinue contraceptive if necessary
CYP3A4/5 substrates	Competitive inhibition of CYP3A4/5 metabolism of other CYP3A4/5 substrates	Monitor for adverse effects and reduce substrate dose as necessary
Antibiotics	Alters intestinal flora which, in turn, reduces the enterohepatic circulation of estrogen metabolites resulting in decreased effica- cy of contraceptive	Use an alternative form of birth control
Corticosteroids	Corticosteroid metabolism inhibited by the contraceptive result- ing in toxicity	Monitor for corticosteroid toxicity and reduce dose if necessary
Warfarin	Contraceptive may increase or decrease warfarin effectiveness; mechanism unknown	Carefully monitor INR

Common (>10%)	Less Common (1-10%)	Rare but Serious (<1%)
Weight change, breast tenderness, breast swelling	Bloating, nausea, stomach cramps, vomiting, depression	Arterial thromboembolism, myocardial infarction, thrombophlebitis, cerebral hemorrhage, cerebral thrombosis, pulmonary embolism, hypertension

Adverse Reactions: Oral Contraceptives

Key Patient Counseling Points. Hormonal contraceptives do not protect against HIV infection or other sexually transmitted diseases. Take this drug at approximately the same time each day. If spotting occurs and no doses have been missed, continue to take tablets even if spotting continues. Report immediately if new severe or persistent headache; blurred or loss of vision; shortness of breath; severe leg, chest, or abdominal pain; or any abnormal vaginal bleeding occur. If you miss 1 dose, take it as soon as you remember it and take the next tablet at the correct time even if you take 2 tablets on the same day or at the same time. If you miss 2 doses in week 1 or 2, take 2 tablets on the day you remember and 2 tablets the next day. If you miss 2 doses in week 3 or miss 3 or more active tablets, then (if you start on day 1) start a new pack the same day or (if you start on Sunday) take 1 tablet daily until Sunday and then start a new pack that day. Use an alternative form of contraception for the next 7 d after you miss 2 or more doses in weeks 1, 2, or 3.

Clinical Pearls. Patients with thrombogenic mutations (eg, factor V Leiden) should not receive oral contraceptives. The CDC provides recommendations for choice of oral contraceptives on their web site at www.cdc.gov. Age, cigarette smoking, concurrent diseases, weight, drug interactions, and reproductive status are all considered when selecting a contraceptive regimen.

This page intentionally left blank

Preface D: General Content Related to the Treatment of Hypertension

Blood Pressure Lowering Therapies

Complete JNC-8 guidelines available at http://jama.jamanetwork.com/article.aspx?articleid=1791497.

Adults Aged \geq 18 y With HIN(JNG8)	Systolic BP Coal (mm Hg)	Diastolic BP Goal (mm Hg)	Initial Treatment Recommendation: Nonblack Patients	Initial Treatment Recommendation: Black Patients
Age ≥60 y without DM or CKD	<150	<90	LSM + thiazide-type diuretic or ACE-I or ARB or CCB, alone or in combination	LSM + thiazide-type diuretic or CCB, alone or in combination
Age <60 y without DM or CKD	<140	<90	LSM + thiazide-type diuretic or ACE-I or ARB or CCB, alone or in combination	LSM + thiazide-type diuretic or CCB, alone or in combination
All ages with DM and no CKD	<140	<90	LSM + thiazide-type diuretic or ACE-I or ARB or CCB, alone or in combination	LSM + thiazide-type diuretic or CCB, alone or in combination
All ages with CKD with or without DM	<140	<90	LSM + ACE-I or ARB, alone or in combination with other drug class	LSM + ACE-I or ARB, alone or in combination with other drug class

Hypertension Guideline Management Algorithm

ACE-I = ACE inhibitor

ARB = Angiotensin receptor blocker

BP = Blood pressure

CCB = Calcium channel blocker

CKD = Chronic kidney disease

DM = Diabetes mellitus

LSM = Lifestyle modifications, including weight reduction, limit alcohol, aerobic activity, limit sodium intake, tobacco cessation, DASH diet

Strategies to Dose Antihypertensive Therapy

A—Start with 1 drug; titrate to maximum recommended dose to achieve goal BP. Add 2nd drug from list (thiazide-type diuretic, CCB, ACE-I, or ARB)* if goal BP not achieved after titration; titrate 2nd drug to maximum recommended dose to achieve goal BP. If goal BP not reached with 1 drugs, add 3rd agent from list and titrate to maximum recommended dose to achieve BP goal. *AVOID combination of ACE-I and ARB*.

B—Start with 1 drug; if goal BP not reached, add 2nd drug from list before achieving maximum recommended dose with 1st drug. Titrate both drugs to maximum recommended doses to achieve BP goal. If goal BP not reached with 2 drugs, add 3rd drug from list and titrate to maximum recommended dose to achieve BP goal. *AVOID combination of ACE-I and ARB*.

C—Initiate therapy with 2 drugs when SBP >160 mm Hg and/or DBP is >100 mm Hg (or if SBP >20 mm Hg and/or DBP >10 mm Hg above goal), either as 2 separate drugs or single combination tablet/capsule. If goal BP not achieved with 2 drugs, add 3rd drug from list and titrate 3rd drug to maximum recommended dose. *AVOID combination of ACE-I and ARB*.

*List reflects those classes of antihypertensive drugs that have demonstrated improved outcomes in randomized controlled trials; drugs from other antihypertensive categories may also be considered.

Evidence-Based Dosing for Antihypertensive Medications

Medication	Initial Daily Dose (mg)	Number of Doses per Day	Target Dose (mg)		
ACE inhibitors					
Captopril	50	2	150-200		
Enalapril	5	1-2	20		
Lisinopril	10	1	40		
Angiotensin receptor blockers			·		
Candesartan	4	1	12-32		
Irbesartan	75	1	300		
Losartan	50	1-2	100		
Valsartan	40-80	1	160-320		
Beta-blockers					
Atenolol	25-50	1	100		
Metoprolol	50	1-2	100-200		
Calcium channel blockers					
Amlodipine	2.5	1	10		
Diltiazem extended release	120-180	1	360		
Thiazide-type diuretics					
Chlorthalidone	12.5	1	12.5-25		
Hydrochlorothiazide	12.5-25	1-2	25-50		
Indapamide	1.25	1	1.25-2.5		

Antihypertensive Drug Classif cations

Class	Commonly Used Drugs
ACE inhibitors	Benazepril
	Captopril
	Enalapril
	Fosinopril
	Lisinopril
	Moexipril
	Perindopril
	Quinapril
	Ramipril
	Trandolapril
Aldosterone antagonists	Eplerenone
	Spironolactone
α_1 -Blockers	Doxazosin
	Prazosin
	Terazosin
Angiotensin receptor blockers	Candesartan
	Eprosartan
	Irbesartan
	Losartan
	Olmesartan
	Telmisartan
	Valsartan

Beta-blockers: nonselective	Betaxolol Nadolol Propranolol Propranolol long acting Timolol
Beta-blockers: cardiac selective	Atenolol Bisoprolol Metoprolol succinate Metoprolol tartrate Nebivolol
Beta-blockers: intrinsic sympathomimetic activity	Acebutolol Penbutolol Pindolol
Combined alpha- and beta-blockers	Carvedilol Labetalol
Calcium channel blockers: dihydropyridines	AmlodipineFelodipineIsradipineNicardipine sustained releaseNifedipine sustained releaseNisoldipine
Calcium channel blockers: non-dihydropyridines	Diltiazem extended release Verapamil Verapamil long acting

Centrally acting agents	Clonidine Clonidine patch Guanfacine Methyldopa Reservine
Direct renin inhibitor	Aliskiren
Direct vasodilators	Hydralazine Minoxidil
Diuretics: thiazides	Chlorothiazide Chlorthalidone Hydrochlorothiazide Indapamide Metolazone
Diuretics: loops	Bumetanide Furosemide Torsemide
Diuretics: potassium sparing	Amiloride Triamterene

Cholesterol Management

2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults available at http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437738.63853.7a.

Cardiovascular Risk Calculator available at http://my.americanheart.org/professional/StatementsGuidelines/Prevention-Guidelines_UCM_457698_SubHomePage.jsp.

Cholesterol Treatment Recommendations to Reduce Atherosclerotic Cardiovascular Disease (ASCVD) Risk in Adults

Patient Population		Recommended Treatment (Heart-healthylifestyle habits are recommended for all patients)
Diagnosed with clinical ASCVD* (secondary prevention)	Age 21-75 y and no statin safety concerns	High-intensity statin
	Age >75 y or statin safety concerns (conditions or drug-drug interac- tions affecting statin safety or history of statin intolerance)	Medium-intensity statin
LDL-C ≥190 mg/dL (primary prevention)	Age≥21 y	High-intensity statin; if goal LDL-C lowering not achieved, may add nonstatin therapy to achieve >50% reduction in LDL-C
Diabetes and LDL-C 70-189 mg/dL (primary prevention)	Age 40-75 y	Moderate-intensity statin If 10-y ASCVD risk ≥7.5%: high-intensity statin
No diabetes and LDL-C 70-189 mg/dL (primary prevention)	Age 40-75 y	10-y ASCVD risk ≥7.5%: moderate- to high-intensity statin 10-y risk 5 to <7.5%: moderate-intensity statin

*Clinical ASCVD includes: acute coronary syndromes, history of myocardial infarction, stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemic attack (TIA), or peripheral arterial disease.

Recommended Statin Intensity to Reduce ASCVD Risk

Low-Intensity Statin Therapy	Moderate-Intensity Statin Therapy	High-Intensity Statin Therapy
Daily dose lowers LDL-C on average by <30%	Daily dose lowers LDL-C on average by approximately 30% to <50%	Daily dose lowers LDL-C on average by approximately ≥50%
Simvastatin 10 mg Pravastatin 10-20 mg Lovastatin 20 mg Fluvastatin 20-40 mg Pitavastatin 1 mg	Atorvastatin 10-20 mg Rosuvastatin 5-10 mg Simvastatin 20-40 mg Pravastatin 40-80 mg Lovastatin 40 mg Fluvastatin XL 80 mg Fluvastatin 40 mg bid Pitavastatin 2-4 mg	Atorvastatin 40-80 mg Rosuvastatin 20-40 mg

Cholesterol-Lowering Drugs

Class	Drugs	Average Ff ects on Lipoproteins	Adverse Ef ects
Bile acid sequestrants	Cholestyramine Colesevelam Colestipol	HDL-C ↑ 3-5% TG No change to ↑ 9% LDL-C ↓ 15-30%	Abdominal discomfort and cramping, con- stipation, flatulence, nausea/vomiting, vita- min deficiency
Cholesterol absorption inhibitor	Ezetimibe	HDL-C ↑ 1% TG ↓ 8% LDL-C ↓ 18%	Arthralgia, diarrhea, myalgia
Fibric acid	Fenofibric acid Fenofibrate Gemfibrozil	HDL-C ↑ 10-20% TG ↓ 20-50% LDL-C ↓ 5-20%	Abdominal pain, arthralgia, constipation, diarrhea, headache, increased liver enzymes, indigestion, myalgia, myopathy, nausea, rhabdomyolysis
HMG-CoA reductase inhibi- tors (statins)	Atorvastatin Fluvastatin Fluvastatin XL Lovastatin Pitavastatin Pravastatin Rosuvastatin Simvastatin	HDL-C↑ 5-15% TG↓ 7-30% LDL-C↓ 18-55%	Arthralgia, diarrhea, headache, increased liver enzymes, indigestion, insomnia, myalgia, myopathy, nausea, rhabdomyolysis
Nicotinic acid	Niaspan	HDL-C ↑ 15-35% TG ↓ 20-50% LDL-C ↓ 5-25%	Flushing, pruritus, rash, nausea/vomiting, increased glucose levels, increased liver enzymes, myalgia, myopathy
Omega-3-acid ethyl ester	Vascepa (EPA)	TG ↓ 21-27%	Joint pain, sore throat
Omega-3-acid ethyl esters	Lovaza (EPA/DHA)	HDL-C ↑ 9% TG ↓ 45% LDL-C ↓ 45%	Altered taste, burping, indigestion, pruritus, rash

HMG-CoA Reductase Inhibitors Comparison

		%Change on Lipoproteins		
Statin Drug	Dose (mg/d)	IDL-C	TG	HDL-C
Atorvastatin	10-80	↓ 39-60	↓ 19-37	↑ 5-9
Fluvastatin	20-80	↓ 22-36	↓ 12-25	↑ 3-11
Lovastatin	10-80	↓ 24-40	↓ 10-19	↑ 7-10
Pitavastatin	1-4	↓ 31-45	↓ 13-22	↑ 1-8
Pravastatin	10-80	↓ 22-37	↓ 11-24	↑ 2-12
Rosuvastatin	5-40	↓ 45-63	↓ 10-35	↑ 8-14
Simvastatin	5-80*	↓ 26-47	↓ 12-33	↑ 8-16

*80-mg dose restricted to patients who have been taking it for more than 12 mo without evidence of myopathy

Preface F: Guide to Combination Cardiovascular Products

Hypertension

Combination Type	Fixed Dose Combination (mg)	Trade Name
ACE inhibitor and CCB	Amlodipine-benazepril (2.5/10, 5/10, 5/20, 10/20)	Lotrel
	Enalapril-felodipine (5/5)	Lexxel
	Trandolapril-verapamil (2/180, 1/240, 2/240, 4/240)	Tarka
ACE inhibitor and diuretic	Benazepril- HCTZ (5/6.25, 10/12.5, 20/12.5, 20/25)	Lotensin HCT
	Captopril-HCTZ (25/15, 25/25, 50/15, 50/25)	Capozide
	Enalapril-HCTZ (5/12.5, 10/25)	Vaseretic
	Fosinopril-HCTZ (10/12.5, 20/12.5)	Monopril/HCT
	Lisinopril-HCTZ (10/12.5, 20/12.5, 20/25)	Prinzide, Zestoretic
	Moexipril-HCTZ (7.5/12.5, 15/25)	Uniretic
	Quinapril-HCTZ (10/12.5, 20/12.5, 20/25)	Accuretic
ARB and CCB	Amlodipine-olmesartan (5/20, 5/40, 10/20, 10/40)	Azor
	Amlodipine-telmisartan (5/40, 5/80, 10/40, 10/80)	Twynsta
	Amlodipine-valsartan (5/160, 5/320, 10/160, 10/320)	Exforge
ARB and CCB and diuretic	Amlodipine-HCTZ-olmesartan (5/12.5/20, 5/12.5/40, 5/25/40,	Tribenzor
	10/12.5/40, 10/25/40)	
	Amlodipine-HCTZ-valsartan (5/12.5/160, 5/25/160,	Exforge HCT
	10/12.5/160, 10/25/160, 10/25/320)	

ARB and diuretic	Azilsartan-chlorthalidone (40/12.5, 40/25)	Edarbyclor
	Candesartan-HCTZ (16/12.5, 32/12.5)	Atacand HCT
	Eprosartan-HCTZ (600/12.5, 600/25)	Teveten-HCT
	Irbesartan-HCTZ (150/12.5, 300/12.5)	Avalide
	Losartan-HCTZ (50/12.5, 100/25)	Hyzaar
	Olmesartan medoxomil-HCTZ (20/12.5, 40/12.5, 40/25)	Benicar-HCT
	Telmisartan-HCTZ (40/12.5, 80/12.5)	Micardis-HCT
	Valsartan-HCTZ (80/12.5, 160/12.5, 160/25)	Diovan-HCT
BB and diuretic	Atenolol-chlorthalidone (50/25, 100/25)	Tenoretic
	Bisoprolol-HCTZ (2.5/6.25, 5/6.25, 10/6.25)	Ziac
	Metoprolol succinate-HCTZ (25/12.5, 50/12.5, 100/12.5)	Dutoprol
	Metoprolol tartrate-HCTZ (50/25, 100/25)	Lopressor HCT
	Nadolol-bendroflumethiazide (40/5, 80/5)	Corzide
	Propranolol LA-HCTZ (40/25, 80/25)	Inderide LA
Centrally acting drug and	Chlorthalidone-clonidine (15/0.1, 15/0.2, 15/0.3)	Clorpres
diuretic	Methyldopa-HCTZ (250/15, 250/25, 500/30, 500/50)	Aldoril
	Reserpine-chlorthalidone (0.125/25, 0.25/50)	Regroton
	Reserpine-chlorothiazide (0.125/250, 0.25/500)	Diupres
	Reserpine-HCTZ (0.125/25, 0.25/50)	Hydropres

Direct renin inhibitor and CCB	Aliskiren-amlodipine (150/5, 150/10, 300/5, 300/10)	Tekamlo
Direct renin inhibitor and	Aliskiren-HCTZ (150/12.5, 150/25, 300/12.5, 300/25)	Tekturna HCT
diuretic		
Direct renin inhibitor and CCB	Aliskiren-amlodipine-HCTZ (150/5/12.5, 300/5/12.5, 300/5/25,	Amturnide
and diuretic	300/10/12.5, 300/10/25)	
Diuretic combination	Amiloride-HCTZ (5/50)	Moduretic
	Spironolactone-HCTZ (25/25, 50/50)	Aldactazide
	Triamterene-HCTZ (37.5/25, 75/50)	Dyazide, Maxzide

Lipid Lowering

Combination Type	Fixed Dose Combination (mg)	Trade Name
Statin and cholesterol absorption inhibitor	Ezetimibe-atorvastatin (10/10, 10/20, 10/40, 10/80) Ezetimibe-simvastatin (10/10, 10/20, 10/40, 10/80)	Liptruzet Vytorin
Statin and nicotinic acid	Lovastatin-niacin (20/500, 20/750, 20/1000, 40/1000)	Advicor
	Niacin-simvastatin (500/20, 500/40, 750/20, 1000/20, 1000/40)	Simcor

Hypertension/Lipid Lowering

Combination Type	Fixed Dose Combination (mg)	Trade Name
CCB and statin	Amlodipine-atorvastatin (2.5/10, 2.5/20, 2.5/40, 5/10, 5/20, 5/40, 5/80, 10/10, 10/20, 10/40, 10/80)	Caduet

Glucose Lowering/Lipid Lowering

Combination Type	Fixed Dose Combination (mg)	Trade Name
Statin and dipetidyl peptidase-4 (DDP-4) enzyme inhibitor	Simvastatin-sitagliptin (10/50, 10/100, 20/50, 20/100, 40/50, 40/100)	Juvisync

This page intentionally left blank

Preface G: Guide to Combination Vaccines

Vaccine	Trade Name	Туре	Route	Comments
DTaP	Daptacel	Inactivated bacterial, toxoid	IM	Diphtheria, tetanus, acellular pertussis
	Infanrix			
	Tripedia			
DTaP-HepB-IPV	Pediarix	Inactivated bacterial, toxoid, viral	IM	Licensed for doses at 2, 4, and 6 mo of age; can be used through age 6 y
DTaP-IPV	Kinrix	Inactivated bacterial, toxoid, viral	IM	Licensed for 5th dose in series at 4-6 y
DTaP-IPV-Hib	Pentacel	Inactivated bacterial, toxoid, viral	IM	Licensed for 4 doses at 2, 4, 6, and 15-18 mo
<i>Haemophilus influenzae</i> type b-hepatitis B	Comvax	Inactivated bacterial, viral	IM	Not used for birth dose of hepatitis B
Hib-MenCY	MenHibrix	Inactivated bacterial	IM	Licensed for 4 doses at 2, 4, 6, and 12-15 mo of age
Hepatitis A-hepatitis B	Twinrix	Inactivated viral	IM	\geq 18 y; 3-dose series
Measles-mumps-rubella	MMR-II	Live attenuated viral	SC	Minimum age 12 mo
Measles-mumps- rubella-varicella	ProQuad	Live attenuated viral	SC	Licensed for ages 1-12 y
Tdap	Boostrix	Inactivated bacterial, toxoid	IM	Tetanus and diphtheria toxoids and pertussis vaccine; ≥ 10 y of age
	Adacel			Tetanus and diphtheria toxoids and pertussis vaccine; 11-64 y of age

IM = intramuscular

SC = subcutaneous

This page intentionally left blank

Preface H: Guide to Cytochrome P450 (CYP) and UGT1A1 Metabolism

Definitions

Inhibitors

- *Strong inhibitor* is one that causes a \geq 5-fold increase in the plasma AUC values or >80% decrease in clearance.
- *Moderate inhibitor* is one that causes a ≥2-fold but <5-fold increase in the plasma AUC values or 50-79% decrease in clearance.
- *Weak inhibitor* is one that causes a >1.25-fold but <2-fold increase in the plasma AUC values or 20-49% decrease in clearance.

Inducers

- *Strong inducer* is one that causes a \geq 80% decrease in the plasma AUC.
- *Moderate inducer* is one that causes a 50-79% decrease in plasma AUC.
- Weak inducer is one that causes a 20-49% decrease in plasma AUC.

Substrates

- Sensitive substrates are when $\geq 25\%$ of metabolism occurs via a given enzyme.
- Non-sensitive substrates are when <25% of metabolism occurs via a given enzyme.

Clinical Implications

Assessment and clinical management of drug-drug interaction:

- 1. Are both drugs systemically absorbed? If no, no drug interaction.
- 2. Do both drugs impact the same enzyme system? If not, no drug interaction.
- 3. The majority of clinically significant drug interactions involve and enzyme inducer or inhibitor and a sensitive substrate (which is metabolized by the enzyme). For example, itraconazole is a strong inhibitor of CYP3A4/5. Amiodarone is a sensitive substrate. Giving them together may result in higher amiodarone levels and toxicity. Clinical management would be to select an alternative antifungal, of dose reduce amiodarone. Strong inducers increase metabolism and decrease efficacy of substrates. Clinical management would be to select an alternative agent or increase the dose of the substrate.

4. Some drugs are prodrugs and require an enzyme to be activated. For example, itraconazole is a strong inhibitor of CYP3A4/5. Cyclophosphamide is a sensitive substrate that is converted to its active metabolite, acrolein, by CYP3A4/5. Giving them together may result in lower acrolein levels and loss of efficacy. Clinical management would be to select an alternative antifungal. Strong inducers, like carbamazepine, increase metabolism and have higher acrolein levels. Clinical management would be to select an alternative agent or decrease the dose of the cyclophosphamide.

Note: Only strong and moderate inhibitors and inducers are included in the drug interaction and drug fact sections. Weak inhibitors and inducers are unlikely to be clinically significant.

CYP1A2

Inhibitors (Strong). Caffeine, ciprofloxacin, enoxacin, fluvoxamine, ketoconazole, lidocaine, methoxselan, mexilitine, nor-floxacin, ofloxacin, primaquine, thiabendazole

Inhibitors (Moderate). Amlodipine, cimetidine, diclofenac, fluoxetine, fospropofol, gemfibrozil, miconazole, nifedipine, propofol, zileuton

Inducers. Aminoglutethimide, carbamazepine, phenobarbital, primadone, rifampin

Substrates (Sensitive). Acenocoumarol, aminophylline, betaxolol, caffeine, clomipramine, clozapine, cyclobenzaprine, dacarbazine, doxepin, duloxetine, estrogens, flutamide, fluvoxamine, mexiletine, mirtazapine, pimozide, propranolol, riluzole, ropinorole, tacrine, theophylline, thiothixene, trifluoperazine

CYP2A6

Inhibitors (Strong). Letrozole, methoxselan, miconazole, tranlcypromine Inhibitors (Moderate). Amiodarone, desipramine, isoniazid, ketoconazole Inducers. Amobarbital, pentobarbital, phenobarbital, rifampin, secobarbital Substrates (Sensitive). Dexmedetomidine

CYP2B6

Inhibitors (Strong). None Inhibitors (Moderate). Doxorubicin, paroxetine, sorafenib Inducers. Carbamazepine, phenobarbital, phenytoin, rifampin

Substrates (Sensitive). Bupropion, cyclophosphamide (activated to acrolein by CYP2B6), efavirenz, irinotecan, ketamine, promethazine, propofol, selegiline

CYP2C8

Inhibitors (Strong). Atorvastatin, gemfibrozil, ritonavir

Inhibitors (Moderate). Celecoxib, felodipine, fenofibrate, irbesartan, losartan, pioglitazone, quine, rabeprazole, rosiglitazone, tamoxifen, trimethoprim

Inducers. Carbamazepine, phenobarbital, phenytoin, primodone, rifampin, secobarbital

Substrates (Sensitive). Amitriptyline, mestranol (activated by CYP2C8 to ethinyl estradiol), paclitaxel, pioglitazone, rifabutin, rosuvastatin, tretinoin

CYP2C9

Inhibitors (Strong). Delaviridine, flurbiprofen, fluconazole, ibuprofen, indomethacin, isoniazid, mefenamic acid, miconazole, nicardipine, sulfadiazine, sulfisoxazole, tolbutamide

Inhibitors (Moderate). Amiodarone, efavirenz, fenofibrate, fluvastatin, gemfibrozil, irbesartan, ketoconazole, losartan, omeprazole, pantoprazole, pyrimethamine, quinine, sorafenib, sulfamethoxazole, trimethoprim, warfarin, zafirlukast

Inducers. Carbamazepine, phenobarbital, phenytoin, primodone, rifampin, rifapentine, secobarbital

Substrates (Sensitive). Alprazolam, bosentan, carvedilol, celecoxib, dapsone, fluoxetine, glimeride, glipizide, ketamine, losartan, mestranol (activated by CYP2C9 to ethinyl estradiol), montelukast, paclitaxel, phenytoin, propofol, sulfadiazine, sulfamethoxazole, sulfisoxazole, sulfinpyrazone, tamoxifen, tolbutamide, torsemide, trimethoprim, voriconazole, warfarin, zafirlukast, zopiclone

CYP2C19

Inhibitors (Strong). Delaviridine, fluconazole, fluoxetine, fluvoxamine, gemfibrozil, ketoconazole, miconazole, modafinil, omeprazole, piroxicam, ticlopidine

Inhibitors (Moderate). Bortezomib, cimetidine, efavirenz, esomeprazole, fospropofol, lansoprazole, loratadine, nicardipine, propofol, rabeprazole, sertraline

Inducers. Aminoglutethimide, carbamazepine, phenytoin, rifampin

Substrates (Sensitive). Carisoprodol, citalopram, clobazam, clomipramine, diazepam, escitalopram, esomeprazole, imipramine, lansoprazole, methsuximide, moclobemide, nelfinavir, nilutamide, omeprazole, pantoprazole, pentamidine, phenobarbital, phenytoin, progesterone, rabeprazole, ranitidine, sertraline, trimipramine, voriconazole

CYP2D6

Inhibitors (Strong). Chlorpromazine, cinacalet, cocaine, delaviridine, dexmedetomidine, dextromethorphan, fluoxetine, miconazole, paroxetine, pergolide, quinidine, ritonavir, ropinirole, terbinafine, quinine

Inhibitors (Moderate). Amiodarone, chloroquine, cimetidine, clomipramine, clozapine, darifenacin, desipramine, diphenhydramine, duloxetine, haloperidol, imipramine, isoniazid, lidocaine, methadone, methimazole, nicardipine, pioglitazone, pyrimethamine, quinine, ranolazine, sertraline, thioridazine, ticlopidine, trazadone

Inducers. None

Substrates (Sensitive).

- Antibiotics: Chloroquine, doxycycline
- Cardiovascular: Atorvastatin, betaxolol, captopril, carvedilol, flecainide, lidocaine, metoprolol, mexiletine, pindolol, propafenone, propranolol, timolol
- *CNS:* Amitriptyline, amphetamine, amoxapine, aripiprazole, chlorpromazine, clomipramine, desipramine, dextroamphetamine, dextromethorphan, dihydroergotamine, duloxetine, fluoxetine, flurazepam, fluvoxamine, haloperidol, imipramine, methylphenidate, mirtazapine, moclobemide, nefazodone, nortriptyline, paroxetine, perphenazine, promethazine, risperidone, sertraline, thioridazine, tramadol, trimipramine, venlafaxine
- Pain: Codeine (prodrug, activated by CYP2D6 to morphine), oxycodone
- Oncology: Doxorubicin, lomustine, tamoxifen
- Misc: Hydrocortisone, lansoprazole, tamulosin

CYP2E1

Inhibitors (Strong). Disulfiram Inhibitors (Moderate). Isoniazid, miconazole

Inducers. None

Substrates (Sensitive). Chlorzoxazone, dacarbazine, halothane, isoflurane, isoniazid, sevoflurane, theophylline, trimethadione

CYP3A4/5

Inhibitors (Strong). Atazanavir, amprenavir/fosamprenavir, clarithromycin, conivaptan, delaviridine, enoxacin, imatinib, indinavir, isoniazid, itraconazole, ketoconazole, miconazole, nefazodone, nelfinavir, nicardipine, propofol, ritonavir, telithromycin **Inhibitors (Moderate).** Amiodarone, aprepitant, cimetidine, clotrimazole, desipramine, dexamethasone, diltiazem, doxycycline, erythromycin, fluconazole, isoniazid, lidocaine, metronidazole, miconazole, norfloxacin, sertraline, tetracycline, verapamil, voriconazole

Inducers. Aminoglutethimide, carbamazepine/oxcarbazepine, nevirapine, phenobarbital, phenytoin, pentobarbital/primadone, rifabutin, rifampin

Substrates (Sensitive)

- Acid blockers: Cisapride, lansoprazole, omeprazole, rabeprazole
- *Antibiotics:* Chloroquine, clarithromycin, doxycycline, erythromycin, mefloquine, telithromycin, tetracycline, trimethoprim, spiramycin
- Antifungals: Itraconazole, ketoconazole, miconazole
- Antihistamines: Azelastine, cerivistatin, chlorpheniramine
- *Cardiovascular:* Amiodarone, bosenten, budesonide, cilostazol, diltiazem, disopyramide, enalapril, felodipine, isosorbide, isradipine, lidocaine, losartan, lovastatin, moricizine, nicardipine, nifedipine, nimodipine, nisoldipine, quinidine, simvastatin, ticlodipine
- *CNS:* Alprazolam, amoxapine, benztropine, buprenorphine, buspirone, carisoprodol, clorazepate, chlordiazepoxide, clobazam, clonazepam, cocaine, dantrolene, diazepam, dihydroergotamine, doxepin, eletriptan, escitalopram, ethosuximide, felbamate, flurazepam, haloperidol, mirtazapine, modafinil, pergolide, phencyclidine, pimozide, quetiapine, ranolazine, trazodone, tiagabine, triazolam

- *HIV*: Amprenavir, atazanavir, delavirdine, efavirenz, indinavir, nefazodone, nelfinavir, nevirapine, primaquine, rifabutin, ritonavir, saquinavir, tipranavir
- *Hormones/Steroids:* Estrogens, exemestane, flutamide, fluticasone, letrozole, medroxyprogesterone, mestranol, progesterone, toremifene
- Immunosuppressants: Cyclosporine, dapsone, sirolimus, tacrolimus
- *Oncology:* Bortezomib, busulfan, cyclophosphamide (activated to acrolein by CYP3A4/5), docetaxel, doxorubicin, etoposide, ifosfamide (activated to acrolein by CYP3A4/5), imatinib, irinotecan, paclitaxel, sorafenib, sunitinib, teniposide
- Pain/Sedation: Alfentanil, fentanyl, ketamine, methadone, midazolam, sufentanil
- Pulmonary: Albuterol, montelukast, salmeterol, theophylline
- *Misc:* Aprepitant, brinzolamide, bromocriptine, colchicine, conivaptan, nateglinide, repaglinide, sibutramine, sildenafil, tamsulosin

UGT1A1

Inhibitors

Atazanavir, gemfibrozil, indinavir

Inducers

Carbamazepine

Substrates

Indacaterol, irinotecan, nilotinib, pazopanib, statins

Definitions

Inhibitors

Inhibitors increase the AUC of substrate drugs by ≥ 1.25 -fold.

Inducers

```
Inducers decrease the AUC of substrate drugs by \geq 1.20-fold.
```

Substrates

- Sensitive substrates are when $\geq 25\%$ of metabolism occurs via a given enzyme.
- *Nonsensitive substrates* are when <25% of metabolism occurs via a given enzyme.

Clinical Implications

Understanding the interaction of drugs with Pgp can assist with managing drug interactions. For example, adding carbamazepine (a Pgp inducer) to digoxin (a Pgp substrate) can lead to marked decreases in serum digoxin concentrations. Clinical management would include monitoring digoxin levels and making dose adjustments.

P-glycoprotein/ABCB1

P-glycoprotein (Pgp) is a membrane-bound, active transport protein located in a number cells and tissues, including intestinal epithelial cells, various lymphocytes, biliary tract, brain, and proximal tubular cells of the kidney. ABCB1 is the name of the gene, while Pgp is the protein.

Its major function is as an efflux transporter of drugs and chemicals. Effects of inducers and inhibitors vary by their location. For example, Pgp transports substrate drugs out of the brain. Inducers may decrease concentrations in the CSF, because there is increased amount of Pgp available to transport substrates, while inhibitors may increase CSF concentrations.

Inhibitors. Abiraterone, amiodarone, atorvastatin, carvedilol, clarithromycin, cobicistat, crizotinib, cyclosporine, darunavir, dipyridamole, dronedarone, erythromycin, grapefruit juice, itraconazole, ivacaftor, ketoconazole, lapatinib, lomitapide, lopinavir, mefloquine, nelfinavir, nicardipine, nilotinib, progesterone, propranolol, quinidine, quinine, ranolazine, reserpine, ritonavir, saquinavir, sunitinib, tacrolimus, tamoxifen, telaprevir, ulipristal, vandetanib, vemurafenib, verapamil. **Inducers.** Carbamazepine, dexamethasone, doxorubicin, nefazodone, prazosin, rifampin, St. John's wort, tenofovir, tipranavir, trazodone, vinblastine.

Substrates (Sensitive). Aliskiren, amiodarone, atorvastatin, bosutinib, carfilzomib, carvedilol, cetirizine, cimetidine, ciprofloxacin, colchicine, crizotinib, cyclosporine, dabigatran, daunorubicin, desloratadine, dexamethasone, digitoxin, digoxin, diltiazem, docetaxel, doxorubicin, erythromycin, estradiol, etoposide, everolimus, fexofenadine, fosamprenavir, hydrocortisone, idarubicin, imatinib, indinavir, irinotecan, ivermectin, lapatinib, linagliptin, loperamide, loratadine, lovastatin, methotrexate, mitomycin, nadolol, nelfinavir, nicardipine, ondansetron, paclitaxel, paclitaxel protein bound, paliperidone, pazopanib, pomalidomide, pravastatin, quinidine, quinine, ranitidine, ranolazine, rifampin, risperidone, ritonavir, rivaroxaban, romidepsin, saquinavir, saxagliptin, silodosin, sirolimus, sitagliptin, tacrolimus, telaprevir, temsirolimus, teniposide, tolvaptan, trabectedin, vemurafenib, verapamil, vinblastine, vincristine, vismodegib. Additional information on drug interactions and specifically agents that affect QT interval can be found on the following web site: https://crediblemeds.org/.

Drugs that are generally accepted to prolong the QT interval and have an increased risk of torsades de pointes

Alfuzosin, amiodarone, amisulpride, anagrelide, apomorphinete, arformoterol, aripiprazole, arsenictrioxide, asenapine, astemizole, azithromycin, bedaquiline, buserelin, cesium chloride, chloral hydrate, chloroquine, chlorpromazine, ciprofloxacin, cisapride, citalopram, clarithromycin, clozapine, cocaine, crizotinib, dasatinib, disopyramide, dofetilide, dolasetron, domperidone, dronedarone, droperidol, eribulin, erythromycin, flecainide, fluoxetine, formoterol, gatifloxacin, goserelin, granisetron, halofantrine, haloperidol, histrelin, hydroxyzine, hydroxyzine, ibutilide, iloperidone, ivabradine, lapatinib, leuprolide, levofloxacin, lopinavir, loxapine, methadone, metoclopramide, metronidazole, mifepristone, moxifloxacin, nelfinavir, nilotinib, ofloxacin, olanzapine, ondansetron, oxycodone, papaverine, pasireotide, pentamidine, perphenazine, pimozide, pipamperone, posaconazole, probucol, procainamide, propafenone, quetiapine, quinidine, quinine, ranolazine, risperidone, saquinavir, sertindole, sorafenib, sotalol, sparfloxacin, sunitinib, telavancin, telithromycin, terlipressin, thioridazine, thiothixene, toremifene, trazodone, tricyclic and tetracyclic antidepressants, triptorelin, vandetanib, vemurafenib, voriconazole, vorinostat, ziprasidone

Drugs that prolong the PR interval

Acetylcholinesterase inhibitors (donepezil, rivastigmine, galantamine), adenosine, alendronate, antiarrhythmics (flecainide, propafenone, procainamide), beta-blockers, calcium channel blockers, digoxin, dolasetron, lithium, HIV protease inhibitors, lacosamide, methyldopa, pregabalin, TCAs, vitamin D and derivatives

Drugs that shorten the PR interval

Atropine, ibutilide

This page intentionally left blank

Drugs with pH-dependent absorption

Drugs that alter gastric pH may alter absorption of drugs with pH-dependent absorption. If concurrent use is required, separate administration of drugs with pH-dependent absorption from antacids by 2 hours, H2 antagonists by 12 hours and avoid PPIs. ACE inhibitors, allopurinol, ascorbic acid, atazanavir, bisacodyl, bisphosphonates, calcitriol, calcium, cefuroxime, chloroquine, citric acid, corticosteroids, dabigatran, dasatinib, deferasirox, deferiprone, delavirdine, eltrombopag, elvitegravir, erlotinib, ethambutol, fexofenadine, gabapentin, iron, isoniazid, itraconazole, ketoconazole, levothyroxine, mesalamine, misoprostol, multivitamins, mycophenolate, nilotinib, phosphorous, ponatinib, quinine, quinolone antibiotics, sodium polystyrene, strontium, tetracyclines, thyroid products, vitamin D and analogues, vismodegib

Drugs that alter gastric pH

Antacids, H₂ antagonists (cimetidine, ranitidine, famotidine, nizatidine), proton pump inhibitors (dexlansoprazole, esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole)

This page intentionally left blank

Preface L: Abbreviations

These are the abbreviations used commonly through these flash cards:

ACE	Angiotensin-converting enzyme	C. difficile	Clostridium difficile
ACE-I	Angiotensin-converting enzyme inhibitor	C. parvum	Cryptosporidium parvum
AChE	Acetylcholinesterase	C. trachomatis	Chlamydia trachomatis
ADHD	Attention-deficit hyperactivity disorder	CABG	Coronary artery bypass grafting
ADP	Adenosine diphosphate	CAD	Coronary artery disease
AEDs	Antiepileptic drugs	CBC	Complete blood count
ALT	Alanine transaminase	CCR5	C-C motif receptor 5
AMI	Acute myocardial infarction	СК	Creatine kinase
AMP	Adenosine monophosphate	CKD	Chronic kidney disease
AMPA	α -Amino-3-hydroxy-5-methyl-	Cmax	Concentration, maximum (on time-
	4-isoxazolepropionic acid		concentration curve)
aPTT	Activated partial thromboplastin time	CNS	Central nervous system
ARB	Angiotensin II receptor blocker	COX-1	Cyclooxygenase-1
AST	Aspartate transaminase	COX-2	Cyclooxygenase-2
ATP	Adenosine triphosphate	COPD	Chronic obstructive pulmonary disease
AUA	American Urologic Association	CR	Controlled release
AUC	Area under the (time-concentration) curve	CrCl	Creatinine clearance
AV	Atrioventricular	CSF	Cerebrospinal fluid
AVP	Arginine vasopressin	CV	Cerebrovascular
B. fragilis	Bacteroides fragilis	СҮР	Cytochrome P
bid	Twice daily (bis in die)	d	Day
BMD	Bone mineral density	DEXA	Dual-energy x-ray absorptiometry
BP	Blood pressure	DHA	Docosahexaenoic acid
BPH	Benign prostatic hyperplasia	DHFR	Dihydrofolate reductase
BUN	Blood urea nitrogen	DILE	Drug-induced lupus erythematosus

dL	Deciliter	G6PD	Glucose-6-phosphate dehydrogenase
DM	Diabetes mellitus	h	Hour
DNA	Deoxyribonucleic acid	H. influenzae	Haemophilus influenzae
DPP-4	Dipeptidyl peptidase-4	H. pylori	Helicobacter pylori
DVT	Deep vein thrombosis	Hgb	Hemoglobin
DTaP	Diphtheria and tetanus toxoids	HbA _{lc}	Glycosylated hemoglobin
E. coli	Escherichia coli		$(hemoglobin A_{lc})$
E. histolytica	Entamoeba histolytica	HBV	Hepatitis B virus
ECG	Electrocardiogram	Hct	Hematocrit
EEG	Electroencephalogram	HCT	Hydrocortisone
eGFR	Estimated glomerular filtration rate	HCTZ	Hydrochlorothiazide
ELISA	Enzyme-linked immunosorbent assay	HDL	High-density lipoprotein
EPA	Eicosapentaenoic acid	HgB	Hemoglobin
ER	Extended release	HIV	Human immunodeficiency virus
ESR	Erythrocyte sedimentation rate	HMG-CoA	Hydroxymethylglutaryl-CoA
ESRD	End-stage renal disease	HPA	Hypothalamic axis
F	Bioavailability	HPV	Human papillomavirus
FAA	Federal Aviation Administration	HR	Heart rate
FBG	Fasting blood glucose	hs	At bedtime (hora somni)
FDA	Food and Drug Administration	HSV	Herpes simplex virus
FPG	Fasting plasma glucose	5-HT ₁	5-hydroxytryptamine 1
FSH	Follicle-stimulating hormone	HTN	Hypertension
G. lamblia	Giardia lamblia	HZV	Herpes zoster virus
GABA	γ-Aminobutyric acid	IM	Intramuscular; infectious mononucleosis
GERD	Gastroesophageal reflux disease	INR	International normalized ratio
GI	Gastrointestinal	IOP	Intraocular pressure
GMP	Guanosine monophosphate	ISMN	Isosorbide mononitrate

IUD	Intrauterine device	NSR	Normal sinus rhythm
IV	Intravenous; Roman numeral four;	NYHA	New York Heart Association
	symbol for class 4 controlled substances	OCD	Obsessive-compulsive disorder
LABA	Long-acting beta-agonist	OTC	Over-the-counter
LDL	Low-density lipoprotein	P. aeruginosa	Pseudomonas aeruginosa
LH	Luteinizing hormone	P. carinii	Pneumocystis carinii
LFT	Liver function test	P. falciparum	Plasmodium falciparum
M. avium	Mycobacterium avium	P. malariae	Plasmodium malariae
M. (B.) catarrhalis	Moraxella (Branhamella) catarrhalis	P. vivax	Plasmodium vivax
MAOI	Monoamine oxidase inhibitor	PBPs	Penicillin-binding proteins
MCV	Mean corpuscular volume	PCP	Pneumocystis carinii pneumonia
MDD	Major depressive disorder	PDE5	Phosphodiesterase type 5
MDI	Metered-dose inhaler	PDEI	Phosphodiesterase inhibitor
mEq	Milliequivalent	PE	Pulmonary embolism
mg	Milligram	PEG	Polyethylene glycol
MHD	Monohydroxy metabolite	PFOR	Pyruvate ferredoxin oxidoreductase
MI	Myocardial infarction; mitral	PFT	Pulmonary function test
	insufficiency	PMDD	Premenstrual dysphoric disorder
min	Minute	ро	By mouth (<i>per os</i>)
MMR	Measles-mumps-rubella	PPAR-α	Peroxisome proliferator-activated
mo	Month		receptor-a
MRI	Magnetic resonance imaging	PPAR-γ	Peroxisome proliferator-activated
MRSA	Methicillin-resistant S. aureus	•	receptor-y
N. meningitides	Neisseria meningitides	PPI	Proton pump inhibitor
NG	Nasogastric	pr	Per rectum
NMDA	N-methyl-d-aspartate	PrEP	Preexposure prophylaxis
NO	Nitric oxide	prn	When necessary, as needed (pro re nata)
NSAID	Nonsteroidal anti-inflammatory drug	PSA	Prostate-specific antigen

lxix

PTSD	Posttraumatic stress disorder	T. rubrum	Trichophyton rubrum
PUD	Peptic ulcer diseases	T. vaginalis	Trichomonas vaginalis
qid	Four times daily (quater in die)	TCA	Tricyclic antidepressant
qod	Every other day	Tdap	Tetanus and diphtheria toxoid
qwk	Every week	TG	Triglyceride
REMS	Risk evaluation and mitigation strategy	TIBC	Total iron-binding capacity
RNA	Ribonucleic acid	tid	Three times daily (ter in die)
S	Second	Tmax	Time to maximum concentration
S. aureus	Staphylococcus aureus		(on time-concentration curve)
S. pneumoniae	Streptococcus pneumoniae	TSH	Thyroid-stimulating hormone
SÂ	Sino-atrial	TTP	Thrombotic thrombocytopenic
SABA	Short-acting beta-agonists		purpura
SAD	Seasonal affective disorder	UGT	Uridine diphosphate
SCr	Serum creatinine		glucuronosyltransferase
SERM	Selective estrogen receptor modulator	UTI	Urinary tract infection
SMZ/TMP	Sulfamethoxazole/trimethoprim	Vd	Volume of distribution
SNRI	Serotonin-norepinephrine reuptake	VLDL	Very low-density lipoprotein
	inhibitor	VZS	Varicella-zoster virus
sq	Subcutaneous	WBC	White blood cell (count)
SŜKI	Saturated solution of potassium iodide	wk	Week
SSRI	Selective serotonin reuptake inhibitor	XR	Extended release
T. mentagrophytes	Trichophyton mentagrophytes	У	Year